You are currently browsing the Door Hardware Genius posts tagged: door repair


A Few Strange Hinges

Interim Hinge by McKinney

Interim Hinge

Above is pictured an interim hinge, used when your door and your frame have different sized hinge preps. For example, your frame is prepped for a five-inch by four-and-a-half inch hinge and your door is prepped for a four-and-a-half by four-and-a-half inch hinge. Why would you need such a thing? Inability to read a tape measure, perhaps?

Wide Throw Hinge

Wide Throw Hinge by McKinney

The hinge above is a wide throw hinge, used when you have a thick molding applied to the pull side face of the door frame. My illustration below shows the difference.

Sometimes people order wide throw hinges by accident because they do not know how to properly measure a full mortise hinge. Full mortise hinges are measured height first, then width. Wide throw hinges have a width that is greater than the height whereas standard hinges do not So if, for example, you order a 5 x 4-1/2 inch hinge you are getting a standard hinge and if you order a 4-1/2 x 5 inch hinge you are getting a wide throw hinge.

Half Mortise and Half Surface Hinges

Half Mortise and Half Surface HInges by McKinney

In the picture above, the half mortise hinge is on the left and the half surface hinge is on the right. As you can see by the “application’ drawings below each hinge, the half mortise hinge has the mortise prep on the door, and the half surface has the mortise prep on the frame. You can tell the half mortise at a glance because the surface leaf is narrow, for installation on the surface of the frame.



Door Sag

Which door is sagging?

Which door is sagging?

I have mentioned this before, but it bears revisiting.  Lock problems and door problems are often related.  If the door is does not swing or is not hung properly the lock may not work properly either.

I bring this up now because I was recently called upon to go out and do actual work. I am no longer used to this and will usually refuse these opportunities, but my daughter called to say that the restaurant where she is working was having problems with their walk-in wine cooler. This small, chilled room is unfortunately located near the entrance of the restaurant, around the corner from virtually all activity except exiting and entering. Should an unscrupulous patron give the grade one cylindrical storeroom function lock a tug on their way out, the door would swing open, inviting pilferage of some very expensive vintages ranging in the hundreds of dollars. Some might even qualify as grand theft. So she asked if I would come out and have a look, and being the wonderful dad I am I grabbed my toolbox and cordless drill and headed out.

I managed not to hurt myself, so I am grateful.

When I arrived on the scene, I noticed immediately that the door was sagging – that is to say, it was no longer square within the door frame.  I could tell because – as in the handy picture I provided above – I could see that the gap between the header and the door was noticeably larger on the lock side than on the hinge side of the door.  I checked the top hinge screws – often the culprit in these situations – but all was well up there and all the screws were tight.   This could mean only one thing:  the door frame had settled with the building and was no longer square.  As a result the latch no longer lined up with the electric strike and the lock would no longer latch.

saghingeSince the door was wood I could have pulled the door, removed the hinges, planed the hinge edge and re-cut the top and middle hinge mortises to bring the lock edge up and back in line with the frame; or I could broken into the walls on both sides and adjusted the door frame so it would be square again.  But because I am old, tired, and was not getting paid I decided to take the easy way out:  I shimmed the bottom hinge, forcing the lock side of the door slightly up so that the lock would once again align with the electric strike.

To shim the bottom hinge I simply put a washer behind the hinge at the location shown in the picture  at right.  Then I explained to the restaurant manager that this was a temporary fix and that later on the door would most likely need attention again because the problem would probably recur.

So I left everyone happy and with a working door, but also with a warning.  Since the door frame is no longer square it is likely to continue in the same direction and someone (not me) will have to address it in the future.

 





And once again I looked like a … Hardware Genius.

Door Hardware Triage

The Medical Metaphor

medicalAs previously published in Doors and Hardware Magazine, Feb. 2016

As in the medical profession, correct diagnosis of door hardware problems is wholly dependent upon the knowledge, skill and powers of observation of the person whose job it is to correct the problem.  “The devil is in the details,” they say, and it is never truer than when said in reference to doors and hardware.

Another old saying, “ignorance is bliss,” can be liberally applied to who those innocent building occupants and visitors who think that the answer to a lock that is not latching is to slam it until it does – or until the hardware falls off, whichever comes first.  Yet by the same token, door hardware technicians who fail to look at door hardware problems holistically are equally blissful.  If you have ever seen the latch hole in an ANSI strike enlarged to include half the head of the bottom mounting screw in order to remedy what is clearly a hinge problem you will understand what I am talking about.

The above occurs because the technician sent to solve the problem is guilty of treating the symptoms while failing to diagnose the disease.  He or she observes that the latch is making contact with the strike too low to drop into the strike hole as it should, but does not question why this is happening.  This example is a simple one, but the principle applies to more complex problems as well.

Method

A great way to make sure you correctly identify a door hardware problem on the first visit is to have a consistent method of examining the total opening.   An example follows:

  1. If possible, speak with the person who has reported the problem, or better yet, meet with them at the opening so that they can show you what the problem is.
  2. As you approach the door, visually check the gap around the edges of the door on the top and both sides.  (The gap should be one-eighth inch.)  If the gap is greater in one place and less in another, the problem may be a bent hinge or misaligned frame.
    Open the door.  How does it feel?  Does the door itself stick?  If it has a latch, is there resistance when you turn the lever to retract it?  Do the hinges groan or squeak?
  3. Inspect the door for dents and abrasions.  For example, scratches at the top of the lock-side edge may indicate bent or loose hinges.   Dents may indicate attempted forced entry:  check for damage to internal lock parts.  A dent in the gap between the door and frame above the top hinge may mean an object was placed there.  The frame may be damaged and/or the top hinge may be bent.
  4. Inspect the hardware for damage, missing parts and/or wear.   If it is a hollow metal frame, are the silencers installed?  If there are no silencers the door will not align properly and the lock will not latch correctly.  Is the door closer leaking?  Does the door closer arm move smoothly?  Are the hinge screws all present and accounted for, and are they tight?  If there is a latch, there probably is a drag mark on the strike.  Does the drag mark reflect correct alignment?

In other words, look at the door, the frame and the hardware thoroughly and completely, and always do it the same way.  That way you won’t fix one problem just to return the following week to fix another problem that you missed.strike

Tools May Be Required

To identify a door hardware problem you may find it helpful to use instruments or tools.   For example, a carpenter’s level can help you determine whether a door or frame is level or plumb quickly and accurately, and a carpenter’s square can show immediately if the frame is true or sprung.   A tape measure may be helpful to check if hardware is correctly located, whether or not the gap between door and frame is consistently one-eighth inch, and if one leg of the door frame seems to be longer than the other.

One problem most swiftly identified using a carpenter’s level is positive pressure.   If you detach the closer arm and tape back the latch on a door that is level, and it swings open seemingly of its own accord, chances are it’s a positive pressure issue.  Positive pressure occurs when the air pressure inside the HVAC ducts is greater than the pressure outside, causing air to be constantly forced out of the structure.  Positive pressure can be powerful enough to prevent a door closer from closing the door, and sometimes the only cure is when the HVAC technician changes the settings on the air circulation system.

The positive pressure issue is one of those door hardware issues that may require someone besides a door hardware technician to fix.

Waiting For The Electrician

Problems with electro-mechanical and electronic locking systems, like positive pressure issues, may require a low voltage or electronics specialist to solve in addition to a door hardware technician.  For liability reasons it is important to use technicians who are appropriately licensed as required in your locality.

Often these problems are due to mechanical as well as – or even instead of – electrical or electronic issues.  Therefore the best situation for electronic or electrical door hardware triage is when the technician called upon to fix a problem is skilled in all three disciplines. Out in the world we are finding locksmiths that have their low voltage electrical technician license and a working knowledge of how to troubleshoot or program an access control system, systems integrators who can disassemble and repair a mortise lock, and even electricians who can adjust a door closer or repair an exit device.

This is a phenomenon driven by a market that desires to have one technician who can do everything, both for convenience and economics.  In any event, a technician equally skilled in these areas solves the problem of cross discipline communication.  If you’ve ever had to explain the difference between fail safe and continuous duty electrified door hardware to someone who just does not get these concepts you will understand what I’m talking about.

For this reason alone it behooves one in the door hardware repair and installation business to learn as much as they can and get all the credentials they need to be able to service all the door hardware out there in today’s electric and electronic world.

Closure

The age of door hardware in which we work today is the age of the renaissance woman or  man, student of many skills.  However, diagnosing the often complex ailments of doors and door hardware takes more than skill and knowledge:  it requires mindfulness, openness, resourcefulness and humility.  It is not only necessary to know what could go wrong (and doubtless will, according to Murphy’s Law); it is necessary to be aware enough to observe all the symptoms, to be open to all possibilities and to be imaginative in creating solutions.  One must also have the humility to realize that it is not possible for anyone to know absolutely everything.  Sometimes the most useful tool at your disposal is your mobile phone.  A call to factory tech support can often save hours of fruitless aggravation.

 





No man is an island – but some men belong on one. 

The Pressure’s On

balloonPositive Pressure Issues

Sometimes doors are required to perform conflicting functions simultaneously.  For example, in order to comply with the American Disabilities Act a particular door may be restricted to a door closer that requires as little as five pounds of opening force.  This same door may be required to lock automatically without fail.

One solution could be to use a non-hydraulic, motorized power operator (automatic door opener) instead of a standard hydraulic closer.  Since many non-hydraulic power operators do not depend on a spring for closing force it is possible for them to have an ADA compliant opening force and also exert a closing adequate to close and latch the door.  Most power operators that fit this description must be installed by AAADM certified installers.

Without the magic fix of the non-hydraulic power operator, all a door technician can do is fine tune the door so that it swings perfectly and is perfectly balanced; fine tune the locks, hinges and door closer to peak performance under the opening force restriction; and pray there isn’t a positive pressure or wind issue.

One caveat:  deprived of electricity, a non-hydraulic power operator will neither open nor close the door.

Positive pressure HVAC operation is a prime example of how the intended function of a door can be impeded or prevented by the normal operation of building infrastructure.   Positive pressure in a building is accomplished by using the HVAC system to add air from outside the building to the air that is already in the building.  As with a balloon, the added air pushes outwards in all directions.  When an exterior door is opened, air flows out through the open portal, acting as an invisible barrier that keeps outside air out.

Unfortunately positive pressure acts like a constant wind pushing on the inside of the exterior doors.   Since almost all exterior doors swing out, the net effect of positive pressure HVAC on exterior doors is that of blowing to doors open and/or preventing them from closing.

The non-hydraulic power operator idea discussed above can usually solve the problem, but I have had some success adjusting door closers to compensate for positive pressure situations.  I have found that a slow swinging speed followed by a fast latching speed will often accomplish the mission.  This solution, however, can create other problems such as creating a wider time window for unauthorized persons to enter while the door is still shutting, for example.

I have found no reliable fix for an opening subjected to positive pressure that must comply with ADA reduced opening force requirements; however, since positive pressure on out-swinging doors inherently reduces opening force, there is some hope.

In the best of all worlds, door hardware technicians and HVAC technicians work together to coordinate positive pressure ventilation needs with security and ADA compliance requirements.

Excerpt from Tom’s article “Butcher, Baker, Door Hardware Technician… ” published in the February 2015 issue of Doors and Hardware Magazine, magazine of the Door Hardware Institute.

Schlage CO and AD Series Mortise Lock Parts

Schlage AD Series

Schlage AD Series

This just goes to show that there is no substitute for field experience. In the quest to provide the best service to his customer, this locksmith went past my advice and the advice of factory tech support to find the best solution.

The locksmith inquired about a replacement latch for a Schlage CO200MS mortise lock. I called Schlage Tech Support and they said that there were no replacement parts available for that CO-200 Series mortise lock chassis; that the entire mortise chassis had to be replaced for a hefty sum and I relayed this info to the locksmith. The locksmith, however, knew that Schlage advertised that the CO series locksets incorporated the Schlage standard L-series lock chassis “for durability and dependability.” Based on this, the locsksmith took a chance, went to the parts list for the L-Series mortise lock with the same function and ordered the replacement latch. He reports that is identical and works fine.

Good to know! One can assume that many parts from the L Series mortise lock with the same function will work in all AD and CO series mortise lock bodies. Like I said, you learn something new every day.

Thanks for stopping by.

Door Problems

If the space between the door and the frame is different at the top than it is at the bottom, you've either got a door problem, or you're going to have a door problem.

As a locksmith I was called many times to fix what the customer thought was a lock problem only to find that the problem was with the door, not with the lock.   “What’s the difference?” you may well ask, proving to me that you are no locksmith.  “Well,” I would smugly reply, relishing my brief moment in the spotlight of useful knowledge.  “I’ll tell you.”  And I will, too.

Overview

Hardware and doors age together and develop different and sometimes incompatible symptoms of aging.  Like people, doors are subject to the prolonged effects of gravity.  Things start to sag, and for a while you can tighten things up and slow down or even perhaps reverse the effects, but eventually Newton will have his way and what was put up will come down.  That is to say the door, suspended an eighth of an inch (ideally) above the threshold, will eventually come to rest on that threshold.  If left to the ravages of time it will eventually cut a groove in the threshold.

Locks, meanwhile, start having trouble finding their strikes.  (A strike is to a lock what a tunnel is to a train or the side pocket to the eight ball.)  Usually (but not always) the strike stays put, but the lock travels downward along with the lock side of the door.  Eventually the lock may not line up with the strike at all, but before that there will be friction between the bolt or latch and the strike, making the lock difficult and eventually impossible to lock and/or unlock.

Besides sagging, wooden doors may warp and door frames of any construction may move as the building shifts and settles over time.  These changes may also result in locks that no longer line up and do not work properly.

Diagnoses and Remedies

The Sagging Door

Looking at the closed door from the ‘pull’ side, it is often easy to see if it is sagging.  If the jamb has not moved and was installed correctly, it is perfectly square.  Ideally there will be a one eighth inch gap between the top and the left and right edges of the door and the frame.  If the door hangs at an angle to the frame, it is probably sagging.

Marks on this ANSI 4-7/8 strike plate show that the latch has traveled down as it has traveled through time because of gravity.

If a door is sagging enough, there will be marks on the lock edge of the door where it is rubbing against the frame.

Often this is because the top hinge is loose.  If you tighten all the hinge screws this may solve the problem.  On a wooden door and/or frame you may find that the screws for the top hinge are stripped – that is, the screw hole has become enlarged because the weight of the door has pulled the screw out.  The solution for this situation may be longer screws.  Be sure you replace the screw with one of the same wire size so it fits flush in the countersunk screw hole of the hinge.  Commercial hinges use a size 12 screw, but bring one of the screws to the hardware store to match it up if you have any doubts.

Many times longer screws do not solve the problem because the wood door is not solid would, but particle core or gypsum core, or the frame is shimmed out from the studs so far that that there is nothing for a screw less than five inches long to grab.  In this case it might be necessary to relocate the top hinge (not generally a good result), install an additional hinge or hinges above and/or below the existing top hinge, install a reinforcing pivot hinge at the top of the door, or replace all the hinges with a continuous hinge.

Damaged Hinges and Crooked Door Jambs

If hinge tightening does not solve the problem, the hinge or hinges may be bent or the door frame may have shifted.

Hinges are often bent when someone (who is not too bright) places a piece of wood between the door and the frame to hold the door open.  It is possible to bend a hinge back to almost its original shape, but when it is bent the metal of the hinge is fatigued and it will never be the same.  Since hinges vary by manufacturer, it is best to replace all the hinges if one is bent unless you can find an exact replacement for the bent hinge.

If the hinges are neither loose nor bent, the door frame may be out of alignment.  Use a carpenter’s square to check the corners of the frame and a level to check the legs and header.

If it is a three-piece, knock down hollow metal frame in a sheet rock wall, you may find an adjustment screw at about eye level on each leg of the frame.  These vary widely between door manufacturers, so see what kind of driver may be required to turn the adjusting screw.   You can experiment with the adjusting screw to see if turning one or the other either way has any desirable effect.  Sometimes the adjustment screws are not connected to anything that has contact with anything else.  In that case turning the adjustment screws will have no effect.

Hollow metal frames that are installed in interior sheet rock walls are often secured to the wall at the bottom of each leg with a screw.  If the floor has shifted beneath the frame so that one leg is now lower than the other, it is possible to remove the screws from both sides of the leg, gently pry the leg up off the floor a little and insert shimming material beneath the leg to hold it up.

Wooden Doors and Frames

Wooden doors and frames are generally susceptible to more movement than hollow metal.  In addition to sagging, there is warping, twisting and swelling that may occur.  Fortunately whenever finished wood rubs up against something, it tends to leave a mark.  These marks can tell you what the door is up to and help you fix the problem.

Unlike a hollow metal or Fiberglas door, you can plane a wood door down.  Careful, though:  make sure you iron out any hinge problems before you start to plane, otherwise you’ll plane, the door will sag more, you’ll plane some more, the door will sag some more – pretty soon you’ll have a big space between the frame and the door someplace and you won’t need a door viewer anymore because you’ll be able to see out the crack.

One has no choice but to plane a door that has swollen.  Plane carefully, a little at a time, and do your best to keep the door as square as possible.  After planing, finish the door with paint, polyurethane or varnish – especially the edges – so that it doesn’t swell again so fast.

This is not a complete list of door problems, but it is a good sampling.  I hope it serves as a starting point for you to solve your own.


Tags