You are currently browsing the Door Hardware Genius posts tagged: egress


Ligature Resistant Door Hardware

Left: Marks USA Lifesaver series. Right: TownSteel MRXA series.

Ligature resistant, otherwise known as anti-ligature or behavioral health door hardware is designed to make it difficult for folks to use it for suicide by hanging or otherwise harming themselves or others.  Pictured adjacent are cylindrical knob and lever locks by Marks USA and a mortise lock by TownSteel.

All are designed to resist attempts to hang oneself.  The cylindrical lever and knob locks feature more or less conical designs that cause a cord to slide off of them regardless of how one might try to tie it on.  The lever turns freely even when locked, achieving the same result.  The mortise lock uses a conical cylinder collar and sloped trim to achieve ligature resistance.  The opening in the pull is closed by a steel plate, making it impossible to pass a cord through it.  The exposed fasteners are security fasteners that require a special tool to loosen, and they fit flat and flush to the escutcheon and lock front.

When you sell or install ligature resistant hardware it is best not to modify the product in any way, because in doing so you will assume all responsibility for anything that happens as a result involving the hardware.  This can include disassembling a cylindrical lock to rekey it.  For this reason I recommend that when keyed anti-ligature locks are specified they are specified as interchangeable or removable core locks.

Ligature resistant hinges have hinge tips called “hospital tips” that are sloped to discourage suicide attempts (see McKinney hinge adjacent).  Security screws also help keep folks safe by making it difficult to use the hinge to hurt oneself or others.   Select Hinge offers a little gem called the “Tipit” for continuous hinges that makes continuous hinges ligature resistant.

Increasingly I field inquiries for ligature resistant door closers for butt or offset hung doors, but to my knowledge there is no such animal as of this writing.  Various factory tech support people have recommended overhead concealed security closers for ligature resistant applications, and this seems to be the consensus at this time.

I believe that using doors that are center hung with single acting, concealed overhead or floor closers would be safer and would eliminate the need for anti-ligature hinges; but this is impractical for retrofit applications where butt or offset hung doors are already present in abundance.

In the illustration below I show why I feel a center hung, concealed, single acting door closer would be the best choice for ligature resistance.





In door hardware, safety is the most important consideration.

 

locksnsafescom

Your source for quality security products with superior service!

The Time-Out Room

DormaKaba Stanley Best SSRL seclusion room lock.

The “Time-out Room,” also called a “Seclusion Room,” is, perhaps, a sign of our times. The purpose of a time-out room in a middle school or elementary school is to temporarily segregate an out-of-control student from the rest of the school population.  As you can imagine, the use of a seclusion room is heavily regulated, and regulations vary from state to state, city to city, and even institution to institution.  However, there are some common rules.  For example, such rooms are required to be equipped with a means to see and communicate with the student while they inside the room; the room must be free of objects and conditions that might be potentially dangerous; and the door must be unlocked from the inside.  The room must also be large enough for the student to lie down in without touching a wall, and must have a high enough ceiling that the student will not have to bend.

The purpose of the room is to let the student cool off and calm down before rejoining the school population.  It is not a holding cell.  Its purpose is less as a punishment than a behavioral tool.

What stops the student from leaving the seclusion room?  A person keeps them in.  A person must be present to observe and make sure the student is safe.  I venture to say that same person is the one who gets the student into the room in first place and keeps them there.  With no great stretch of the imagination, one might foresee instances in which the student to be secluded might be significantly bigger and stronger than the person responsible for keeping him and others safe.  It might be physically impossible for the responsible person to keep the student in the room.  They might need help.

The answer could be to put someone large, strong and well-versed in non-lethal martial arts with the patience of a saint in charge of the seclusion room duties, or it could be to use some kind of locking device to keep them in.  But, wait!  You can’t lock them in.  It’s against the rules.  How do you solve the problem?

Often the answer is an electromagnetic lock controlled by a normally open, momentary contact switch.  The magnet is only activated when the button is pressed.  As soon as the responsible person takes their hand off the button the mag lock is unlocked.  Often, local or institutional rules governing seclusion rooms require a time limit on seclusion.  One could add a timer to the system that would automatically release the electromagnetic lock after the permissible amount of time has expired.  Life safety code would demand that the magnetic lock be disabled by the fire alarm.

Pictured above is the Stanley Best SSRL seclusion room lock as seen under the Behavioral Health Products section at the bestaccess.com web site.  One must stand there and hold the lever in position to temporarily secure the door.  In photo we can see that the door is a hollow metal door in a hollow metal frame, and the door has a lite kit in it with wire glass.  I’ll bet it’s a heavy gauge, reinforced steel door, too, judging from the three-point locking version of the SSRL shown.  Clearly they expect trouble.  Through the window they can observe the student and make sure that they are safe.

Since we can see the knuckles of the hinges we know the door swings out.  This eliminates the need for a ligature-resistant handle on the inside of the door.   We’ll talk more about ligature-resistant hardware soon.





Sometimes you just need a little time.

 

locksnsafescom

Your source for quality security products with superior service!

Experiencing the New Von Duprin Chexit

Chexit door label from Chexit installation instructions.

Von Duprin Chexit door label from Chexit installation instructions.

Last year Von Duprin began shipping Chexit self-contained delayed egress exit devices that are motorized instead of solenoid driven.  Since they are motorized, the new Chexits draw less current and will probably be more reliable than the previous solenoid-driven version. This means a less serious, less expensive power supply, less need for high capacity, high gauge, high cost wire and greatly increased workable wire run distances – all good things.

The new Chexit will do everything the old Chexit did, including release of the outside lever trim when the external inhibit function is activated by access control or another external switch.  That remains a way to get access control out of a Chexit by simply adding a blank escutcheon or other unlocked outside trim to the Chexit exit device.

As of this writing Exit-only function Chexit devices were being shipped less the part number 040193-00 cable used to connect the E996L to the Chexit PC board.  The cables are only provided if you order the Chexit from the factory with trim, but that is okay as long as you want to use no trim or non-electric trim.  Electrified trim is a means to provide fail secure access control from the trim side, so if the fire alarm goes off and powers down the Chexit, the fail secure electrified trim will stay locked.  Entry can still be gained by key.

On another note, recently I was involved in an application where the installer was replacing a mortise exit device and wanted delayed egress from the push side and free ingress from the pull side.  Luckily it was a mortise device, so all I had to do was provide a Chexit mortise exit device with blank escutcheon (passage function) trim because THE MORTISE LOCK ACTS INDEPENDENTLY FROM THE CHEXIT ON THE TRIM SIDE. Cool. 🙂

Bear in mind that  the Chexit remains active while people are using the passage function trim to get in, so if they happen to depress the touch bar, say by bumping it up against the wall for two seconds, they may activate the Chexit alarm.   Von Duprin Tech Support suggested a palm switch on the trim side to activate the inhibit circuit in the Chexit while a person enters from that side.

 





It was fun, easy, and I looked like a … Hardware Genius.

Choosing a Delayed Egress System: Self-Contained, or Built from Components?

Delayed egress is a process that delays unauthorized exit from a space while complying with NFPA 101 life safety code.  Use of this process is strictly regulated with the help of building inspectors and fire marshals across the United Sates.  With that in mind it is always a good idea to get your local AHJ (Authority Having Jurisdiction) on board whenever you are planning to install delayed egress on an opening.

When you beginning planning your delayed egress system you will find that many systems on the market are self-contained.    These could be delayed egress electromagnetic locks or electrified delayed egress exit devices.

Here are some examples of self-contained delayed egress maglocks:

  • SDC 1511S
  • Schlage Electronics M490DE
  • Dynalock 3101C

Here are some examples of self-contained delayed egress exit devices:

  • Detex V40 EE
  • Von Duprin Chexit
  • Sargent Electroguard

delayed-egress-anatomy
Almost all delayed egress systems are made up of the same components:

  1. Delayed egress timer and relay logic board
  2. Initiating Switch (to initiate the delayed egress process)
  3. Audible alarm
  4. Signage
  5. Reset switch
  6. Optional bypass switch
  7. Fire Alarm interface
  8. Power supply
  9. Locking device

Therefore it is possible to construct a custom delayed egress system from components.  Later I’ll talk about why you might want to choose a built-from-components delayed egress system instead of a self-contained one.   The following sections describe each part of a built-from-components delayed egress system.

Delayed Egress Timer and Relay Logic Board

This board is UL Listed and specifically designed to perform all delayed egress functions in compliance with life safety code.   Here are some examples of component boards for delayed egress:

  • Securitron XDT-12 or XDT-24
  • Seco-Larm SA-025EQ

The board is the brains of the delayed egress operation.  It has contacts to wire in switches for delayed egress initiation, fire alarm interface and system reset, timers to control nuisance and egress delay, and relays to control locks and notify external devices.

There are also delayed egress controllers that offer more features.  The following may include the delayed egress timer/relay board and some other required feature(s) such as the initiation switch or the audible alarm.

  • Alarm Controls DE-1
  • Security Door Controls 101-DE
  • Securitron BA-XDT-12 or BA-XDT-24

Initiating Switch

The switch that initiates the delayed egress process shares several characteristics with any request-to-exit switch.  To comply with life safety regulations it must require no prior knowledge to operate; it must require no more than one motion to operate; and it must be placed in relation to the door according to life safety standards in your local jurisdiction.  I think that the best possible initiation device is a mechanical push bar with a switch, such as the Adams Rite 8099-M or the Securitron EMB.  In a panic situation it remains obvious that to get out, one must push on the bar, and because it is mechanical it is unaffected by power outage.  If it is wired to open the contact when pushed, if the wires leading to it are cut it will initiate the delayed egress process.

In rare circumstances where it might be permitted, the locking device might be a fail safe electrified mortise lock that is locked on both sides, inside and out.  Then the initiation switch might be a palm switch next to the door.

Audible Alarm

The mandatory audible alarm sounds for 15 seconds before the delayed egress controller releases the locking device to allow exit.  It’s loudness must be between 81 and 88 decibels.  In some jurisdictions the alarm must be manually reset at the door; in others it may be self resetting via timer or door position switch.  Yet another reason to have a heart-to-heart talk with your local AHJ when designing your delayed egress system.

Signage

The wording on the mandatory sign must comply with life safety code.  There are minor variations in wording.  I suggest buying a sign that is part of a delayed egress system.  The sign that comes standard with the Von Duprin Chexit is readily available as a separate part.

Reset Switch

As mentioned in the “Audible Alarm” section above, a delayed egress system reset switch located at the door is mandatory in some jurisdictions.  Check with your local AHJ.  In some jurisdictions delayed egress systems are allowed to be reset by remote switch or other means, such as a door position switch.

Any kind of momentary contact switch will do the reset switch job, but delayed egress system reset switches located at the door almost always require some kind of security to prevent unauthorized resetting.   Standalone keypads or key switches are often used for this purpose.  Delayed egress systems can also be integrated into existing access control.

Optional Bypass Switch

Not required but often needed, the optional bypass switch allows authorized personnel to exit without triggering the delayed egress system.  Again, any momentary contact switch will do, but usually some security is required.  If you are using a keypad as the system reset switch and the keypad has more than one relay, you can program the second relay to be the bypass switch.

If access from the exterior side is required a bypass switch is required on that side.  Sometimes security is not needed from the exterior side.  In that case a simple momentary contact pushbutton will do the job.

Fire Alarm Interface

The mandatory fire alarm interface allows enables fire alarm panel to deactivate the delayed egress system immediately in the event of a fire alarm.  This is an integral part of the life safety code that allows a delayed egress system to exist.  Therefore, if your building does not have a fire alarm panel, without special permission from the local AHJ you cannot have a delayed egress system.

Power Supply

All delayed egress systems I have had experience with run on low voltage power that comes from a low voltage power supply.  Generally delayed egress systems require regulated and filtered power at 12 or 24 volts.  Delayed egress controllers draw very little current, but as will all electrically operated systems, the current draw of all attached devices must be taken into account when selecting a power supply.

Locking Device

The locking device must be electrically locked and fail safe from the egress (interior) side.  The most frequently used locking device in a component based delayed egress system is the electromagnetic lock.

Why Build a Delayed Egress System?

Why would you put together a delayed egress system from components when there are so many good self-contained systems?

  1.  To Save Money.  Piecing together a delayed egress system can be significantly cheaper than buying a self contained delayed egress system.
  2.  To take advantage of existing hardware.  For example, if there is already an electromagnetic lock on the door, adding the other components is relatively easy.
  3. Conditions at the door prohibit use of a self contained delayed egress system.  For example, door size or the presence of existing hardware may require the installer to seek a more creative solution.

 





Bottom line, unless you have a prison, you cannot lock ’em in.  Well, not without permission.  🙂

Locking People In

I often get a request to help create a system that locks people in.  People want to lock children inside a daycare center, students inside a “Time-Out” room, babies inside a nursery in a maternity hospital or patients inside, for example, an Alzheimer’s disease in-patient facility for their own good.

“Well, what if there’s a fire?” I ask.

That’s really the issue.  If we are keeping them in, how are they supposed to get out in the event of a fire?  Yet, except when there is a fire or other emergency that renders the building unsafe, it is in their best interest if they are kept inside.

Often, people simply want to lock people in with an electromagnetic lock or other device.  Since this is certainly a violation of life safety code, any injury that may result would be uninsurable and could invite litigation.

I discuss delayed egress systems in depth in another article (click here to read).     A delayed egress system is really the right way to do this, since it is actually covered in the NFPA 101A Special Locking Arrangements section of the fire safety code, but it is fairly inconvenient to use.  To get out without setting off an alarm users must use some kind of bypass request to exit switch like a keypad, card reader or key switch – much less convenient than, say, simply pushing a door open via the push pad on an exit device.

The gist of a delayed egress system is that, after a short ‘nuisance’ delay, the lock sounds an alarm for fifteen seconds and then lets the person out.  That means that authorities on the secured premises have fifteen seconds to get to the exit and prevent unauthorized egress.

Where unauthorized egress is not a life threatening prospect, therefore, a delayed egress system is perfectly adequate.  However, when a person’s life may depend on being kept inside their care facility, a more complex solution maybe required.

A great solution for Alzheimer’s or other dementia care facilities is the WanderGuard system by Stanley.  This system is designed for Alzheimer’s and other health care facilities where unscheduled patient departure is an issue, and covers other needs with fall monitoring and patient call capabilities.  Patients are fitted with bracelets that serve as tracking and communication devices.  As one might expect, such a system is not inexpensive and a bit on the overkill side for use in a day care center or maternity facility.  To physically keep people inside the facility, the WanderGuard system is designed to interface with delayed egress locks.

I think that the WanderGuard system would be a good choice for use in maternity ward nurseries as well.

The situation is more challenging when you have a day care center or a “Time-Out” room.

I had heard that Schlage was coming out with a mechanical time out lock, but a search as of today renders only the same Time-Out Room solution:  An electromagnetic lock with a momentary pushbutton.  The troublesome child is forced into a room, the door is shut, and then the teacher or other disciplinarian must physically press the momentary contact pushbutton to keep the magnetic locked locked.  As soon as the teacher lets go, the child is free.

As long as the button is momentary, I have no problem with this idea.  Should there be a fire or other life safety emergency, even if the teacher panics and runs away, leaving the child in the Time Out Room, the child will still be able to leave the room and exit the building.

The right way to prevent the kids in a daycare center from running out of the building and into the street without permission is with a delayed egress system.  True, it may be cumbersome to punch in a code on a keypad or present a proximity card for authorized egress, but delayed egress systems can be easily deactivated for periods of time, say, for drop off and pick up.  A delayed egress system is more expensive than, for example, an electromagnetic lock connected to the fire alarm system for safety.  But if you run the scenario of a fire in your mind, the fire alarm interface to the electromagnet malfunctions, panicked children and day care providers flinging themselves against an illegally locked door, too crazed with fear to think – suddenly a delayed egress system makes a lot more sense.

There is really only one place you can really lock someone in, and that’s in a jail or prison.  Otherwise there must be some provision to let them out – for safety’s sake.

 

Exit Devices with Electric Latch Retraction

Overview

Almost all exit device manufacturers offer the option of electric latch retraction on their touch-bar style exit devices.  Different manufactures may call it by other names such as ‘latch pull-back’ or ‘remote dogging’.  Some people refer a device with electric latch retraction as an ‘electrified exit device’, but that could also refer to electric unlocking of outside trim – a different animal altogether.  Electric latch retraction is accomplished by using a solenoid or electric motor to actually retract the latch or latches of an exit device.

Below are some characteristics of electric latch retraction:

  • Electric latch retraction is fail secure.  When power is supplied, the latches retract.  When power is shut off, the latches extend, securing the door.
  • Electric latch retraction works well with power operators because when the latches are retracted, the doors can swing free.
  • With electric latch retraction, pairs of doors can continue to be latched top and bottom.

Cheaper alternatives, such as using an electromagnetic lock or an electric strike, would result in double doors that are only locked at the top.  If they happen to be aluminum narrow stile doors locked only at the top, a person could actually pull the bottom of the locked door open several inches with very little effort.  Such installations are at best sloppy, at worst not secure.  

Solenoid vs. Motorized Latch Retraction

Solenoid driven electric latch retraction usually requires a specialized power supply due to the high inrush of current required (between 12 Amps and 16 Amps at 12 or 24 Volts DC).  Motorized latch retraction generally requires just over 1 Amp of current for activation.  

Solenoids are generally louder than motors, since solenoids move abruptly whereas motors retract at a slightly slower pace, and are therefore quieter.  

Global Considerations

  • Check door width. Electric latch retraction devices may not fit if the door is too narrow.
  • A means of getting current from the door frame into the device, such as a door cord or electric power transfer will be needed.
  • Voltage drop due to length of wire run could be an issue with high current inrush devices.

Following are examples of electric latch retraction exit devices by different manufacturers. 

Please keep in mind that any of the part numbers shown may change without notice at any time.  

Adams Rite

Adams Rite makes hardware primarily for aluminum-and-glass storefront type doors, but also for standard hollow metal and wood doors. All of their exit devices are available with MLR (motorized latch retraction) or solenoid latch retraction (EL for rim devices and LR for all other devices).  They make rim, concealed vertical rod, surface vertical rod, and mortise exit devices.

  • MLR motorized option draws 850 mA during retraction and 370 mA when maintained in dogged hold position at 24 VDC.  Available in 24 VDC only.  (ex. part number 8xxxMLR) 
  • EL solenoid driven option (for rim devices, example part number 8801EL-36-12) draws 1.5 Amps at 12 VDC and 600 mA at 24 VDC
  • LR solenoid driven option (example part number 8xxxLR-36) draws 16 Amps at 24 VDC (inrush) and 500 mA (holding current) at 24 VDC 

They do not offer a retrofit kit for field conversion of existing devices as of this writing, but aftermarket kits are available from other manufacturers.   

Falcon / Doromatic

Falcon makes Doromatic exit devices primarily for aluminum storefront doors. All of their touch-bar style devices are available with electric latch retraction. Currently they use the Von Duprin-type solenoid for latch retraction, and use the Von Duprin PS914-2RS power supply to handle the 16-amp inrush current these solenoids draw.

The PS914-2RS  will power up to 2 exit devices with electric latch retraction.

Doromatic offers a solenoid driven electric latch retraction field retrofit kit for their 1490 series concealed vertical rod and 1590 series rim devices as well as factory installed electric latch retraction. The EL1690 concealed vertical rod device and EL1790 rim device can be used field retrofit kits to electrify the 1990 and 2090 series crossbar “pipe-type” exit devices for latch retraction since they have the same latch side footprint and the vertical rod devices can use the existing rods.  

Falcon offers their grade 1 series 24 and 25 exit devices with electric latch retraction or motorized latch retraction and field conversion kits. 

Falcon exit device example part numbers: 

  • EL solenoid latch retraction (EL25-R-EO 3 US32D)
  • MEL motorized latch retraction (MEL25-R-EO 3 US32D) 

Example field conversion kits: 

  • ELK-3 or ELK-4 (or 650147 or 650148) solenoid latch retraction kit for 3- or 4-foot 24 or 25 series exit devices.  Specify finish. 
  • 25-MELK-3 or 25-MELK-4 (or 47266630 or 47266631) motorized latch retraction kit for 3- or 4-foot 25 series devices only.  24 series MEL devices are factory only.  Specify finish.  

Precision

Precision makes exit devices for hollow metal, aluminum storefront, and wood doors, fire rated and non fire rated. All of their touch bar-style exit devices are available with electric latch retraction, and they offer both solenoid driven and motorized electric latch retraction for their grade 1 devices.   

  • ELR solenoid latch retraction (ex. part number ELR2103 630 36)
  • MLR motorized latch retraction (ex. part number MLR2103 630 36) 

Precision makes retrofit solenoid electric latch retraction kits specific to various device characteristics.   

  • Non-fire rated 3- or 4-foot wide stile exit device:  ELRK-3 / ELRK-4 
  • Fire rated 3- or 4- foot wide stile exit device:  ELRKF-3 / ELRKF-4 
  • Non-fire rated 3- or 4- foot narrow stile exit device:  NELRK-3 / NELRK-4 
  • Fire rated 3- or 4-foot narrow stile exit device:  NELRKF-3 / NELRKF-4 

They make one kit to convert any of their touch bar devices to motorized latch retraction: 

  • RPMLR-K  

Sargent

Sargent offers a wide variety of exit devices in various functions and configurations to accommodate diverse applications. All 80-series models are available with “Remote Dogging / Latch Retraction”.  Sargent recommends the Securitron BPS-24-1 power supply, a simple 1-amp, 24VDC power supply, to power electric latch retraction devices.  

To designate Remote Dogging / Latch Retraction they use a prefix 56- to the exit device part number.

Example part number: 56-8810F 32D 

Sargent offers two kinds of retrofit kits to convert existing Sargent exit devices to motorized latch retraction in the field.  The R56A kit includes a complete touch bar (specify finish) whereas the M56A consists of a motor and control module unit that is unfinished.  Rail size (according to door width) must be specified for either.  Sargent uses letter designations for rail size: 

  • E = 24 to 32 inch door width 
  • F = 33 to 36 inch door width 
  • J = 37 to 42 inch door width 
  • G = 43 to 48 inch door width 

Example part numbers: 

  • Modular kit:  M56AF
  • Push Rail Assembly Kit:  R56AF 32D 

Von Duprin

Von Duprin offers two kinds of electric latch retraction in rim, surface vertical rod, concealed vertical rod, mortise, and three-point exit devices for narrow stile aluminum storefront, standard hollow metal, and wood door applications.  To order exit devices with latch retraction use prefix EL for solenoid latch retraction or QEL for motorized latch retraction.  

EL prefix devices require the PS914-2RS power supply.   PS902-2RS are the manufacturer’s recommendations for QEL prefix devices, but any regulated and filtered power supply 2 Amps or greater will do.  If powering 2 devices simultaneously, the PS902-2RS will stagger the inrush, firing one QEL at a time.  Since each draws 1 Amp, simultaneous activation of two devices might max out a standard 2 Amp power supply.  If another manufacturer’s power supply will be used to power two devices, I suggest using a 3 Amp power supply. 

Wire run/current drop factors apply.  

Example part numbers:  

  • Solenoid latch retraction:  EL99EO 3 26D 
  • Motorized latch retraction:  QEL99EO 3 26D 

Von Duprin offers a variety of retrofit kits to field convert existing exit devices to electric latch retraction.  Options include motorized latch retraction kits, kits that include rail backplate (specify door 3 or 4 foot door width), kits with motorized latch retraction and hex key dogging, etc.   Here I list part numbers for the most common variations:  

  • Solenoid Latch retraction (EL) kits:  
    • For 3-foot door width:  050070 
    • For 4-foot door width:  050078 
  • Motorized latch retraction (QEL) kits: 
    • For 3-foot door width: 958003 
    • For 4-foot door width:  040065 

Dorma

Dorma offers solenoid and motorized latch retraction for their 9000 series exit devices.   ES is the designation for solenoid driven latch retraction and MLR for motorized latch retraction.  They offer full replacement touch bar and rail assemblies that can be used to field convert devices to ES or MLR.   

Example exit device with latch retraction part numbers: 

  • With solenoid latch retraction:  9x00B RHR 630 ES 
  • With motorized latch retraction:  9×00 RHR 630 MLR 

ES option requires Dorma PS501 power supply.  

MLR option, Dorma DKPS-2A power supply recommended, but any 2 Amp regulated and filtered power supply will work.  

Rail size designations:  

  • A – for door width 34 inches to 48 inches
  • B – for door width 28 inches to 36 inches 
  • C – for door width 25 inches to 30 inches 

Touch bar and rail assemblies, example part numbers: 

  • MLR option motorized latch retraction:  MLRTBR 630 B
  • MLR option fire rated motorized latch retraction:  MLRFTBR 630 B
  • ES option solenoid latch retraction:  ESTBR 630 B
  • ES option fire rated solenoid latch retraction:  ESFTBR 630 B 


Tags