You are currently browsing the Door Hardware Genius posts tagged: electronic security


Electric Hinge vs. EPT (and oh yeah, Molex)

McKinney Electric Thru Wire Hinge with Molex connectors

I was taking a class on Molex connectors a while ago and the teacher – a manufacturer’s representative from a major hardware manufacturer – expressed the opinion that for high traffic applications, a power transfer is preferable to an electric thru wire hinge.  I confess that until that moment I had not actually thought about it much, but what he said made a lot of sense.  After all, almost everyone prefers an electric hinge to an EPT because of the relative ease of installation.

But the rep made a good point.  The wires that run through an electric through an electric hinge are pretty thin – usually 24 or 26 gauge wire – and every time the door is used these wires are bent back and forth.  If you’ve ever bent a copper wire back and forth in your hands until it breaks you will know what I’m getting at here.  When you bend a copper wire back and forth, over and over, first it heats up, then it breaks.  The same process is going on in the knuckle of that hinge.  There’s a whole lot o’ twistin’ goin’ on.

Von Duprin EPT10

When you open a door equipped with an EPT, however, there is less twisting happening.  The wires must still bend with the motion, but only a fraction of the bending that occurs with an electric hinge.  That’s why the rep always recommends EPT’s over electric hinges if the opening is to have any serious traffic through it.  Sure, installing an EPT is a lot more work, but a callback to replace a failed electric hinge is at least as much work, especially considering travel time.

Yes, you’re right, I did mention Molex connector class.  A few times now I’ve run into applications where the installer wants to convert a regular removable mullion into an electric mullion so they can install an electric strike on the mullion.  Since the advent of the surface mounted electric strike for rim exit devices, it was inevitable that someone would want to do this.  The problem?  What do you do with the wire at the header?  Well, if you just run a continuous wire, the mullion is no longer removable, is it?

But, aha!  I said.  We’ll use a Molex connector at the header.  What is a Molex connector, you ask?  Those would be those plastic connectors attached to the ends of the wires on the McKinney hinge above.  Molex is a company that has created a system of plug-and-play wire connectors, and these connectors are becoming more and more common in the door hardware industry.  Major door hardware manufacturers are now incorporating Molex connectors into all their electrified products and offering what are in effect extension cords with Molex connectors.

So a couple of connector-equipped extension cords would solve the problem of the suddenly non-removable mullion, right?  Well, not so fast, buckaroo.

This is what I learned in Molex class.  In Molex connectors, which connector will connect to what other connector is determined by the pin crimped onto the end of the wire.  They give them genders, “male” and “female”, because the male can be inserted into the female.  Okay, great.  Where is the problem?  The problem is that as of this writing, door hardware manufacturers’ extension cords all have connectors of the same gender on each end, so you cannot plug them into each other.  They will only plug into an electric hinge or EPT that has Molex connectors.

The solution to the DIY electrified mullion problem:  make your own DIY Molex connector for the wire in the header.  To do this you will need a standard wire stripper, some 12-conductor cable, the special Molex crimping tool, Molex connector housings, and Molex male and female pins.  There is a service kit available that contains all these parts.  It is a fairly time consuming process to make your own Molex connector, and it requires skill, but it is the only solution that I know to the mullion problem.

Get your surface mount electric strike with Molex connectors (several electric strike manufacturers offer these) and an extension cable from Assa Abloy or Allegion to get the wire from the strike to the top of the mullion.  Now you have the capability to connect your makeshift electrified mullion into the connector you must make.  You can attach your homemade Molex to as long a cable as you like – long enough to reach the power supply or access control panel.

Does this solution comply with code? I do not know. Best check with your local AHJ before embarking on your Molex DIY mullion adventure.

Why is the industry moving to Molex connectors?  They do not fall off, look ugly, or take up a lot of space like wire nuts, and if you need to trade out an electric hinge or electric strike they sure do make it a whole lot cleaner and easier.

 





That’s right. As usual, it all comes down to sex.

 

locksnsafescom

Your source for quality security products with superior service!

The Wacky World of Wireless Access Control Locks

Wireless access control locks are at the leading edge of door hardware evolution, creating hybrid devices that are both credential reader and locking hardware all in one. Some of these locks are designed to integrate with existing access control systems without the need to run cable back to the panel from the door; others interface with their own software on the end user’s computer or computer network using a wifi gateway.

Left: Dorma Kaba Eplex ………… Right: Alarm Lock Networx

The Independent Systems

Alarm Lock and Dorma Kaba are two manufacturers that offer wireless access control locks with proprietary software designed only to control and monitor these locks.  This represents a step up from standalone programmable locks that needed to be visited with a notebook computer or handheld programmer for programming and audit trail download purposes. The locks connect via a wireless router or gateway to a single PC or to a server on the end user’s computer network.

The Alarm Lock Networx product can also be integrated into a few access control systems; see the Alarm Lock Networx web site for details.  The Dorma Kaba wireless Eplex lock is compatible with Dorma Kaba E-Enterprise software.

These independent solutions are good for folks who want to upgrade from mechanical locking systems to electronic access control, offering full featured access control capabilities, near-instantaneous reporting and monitoring and requiring very little wiring to install.

If, however, the end user has an existing access control system that they would like to expand, using the Alarm Lock Networx software or Dorma Kaba E-Enterprise software would mean adding a second access control system – a complication many end users would like to avoid.

In the past, when a facility wanted to expand their access control system their access control company would be called in to run wire and install credential readers and the door hardware installer might be called in to install electric locks or strikes to be controlled by these new readers. Today, however, the door hardware installer can install wireless access control locks that can be integrated into the end users existing system.

But wait! Not so fast, there, champ.

Left: Schlage AD-400 ………. Right: Sargent IN120

The Integrators

Allegion and Assa Abloy are two major lock manufacturers that offer wireless access control locks that integrate with existing access control systems. This means that the end user can program these locks using the same access control software they are currently using.

Using the Allegion AD series wireless as an example, a single interface panel can allow up to sixty-four of these locks to the panel. There is actually some wiring involved with wireless locks: the interface panel (or wifi gateway) must still be wired to the main access control panel. This is the great attraction: that one can greatly expand an access control system without spending a lot of time and money on wiring. A wire is run from the access control panel to the interface panel in a distant wing of the building, and then the interface panel (or a few of them) communicate with all the locks in that wing.

Conflict arises from the very fact that these locks are designed to integrate with existing systems. Over the last several decades, access control systems have become big business. Traditionally, for every door in the system, the access control company sells a reader. In addition, an expansion module may be needed at the access control panel. If we install sixty-four wireless locks and integrate them into the existing access control system, it can be said that we just deprived the access control company of the sale of sixty-four readers.

Access control does a lot more than control access these days. Access control, environmental control systems, fire and security alarms, elevator control, employee time and attendance, student meal plan administration and other systems may all be incorporated into the same system, run by enterprise level software on a server on the end user’s computer network. You might say the access control company that owns the rights to the software and manufactures the access control panel is in a very secure position. Extricating one access control company to replace it with another could be a monumental task, involving every person whose life the system touches.

What can access control manufacturers do about these wireless locks being attached to their systems? Plenty. They can update their software so that these locks are incompatible. They can charge the end user a licensing fee for every lock that is added. In short, they can make the addition of wireless access control locks to their system expensive or impossible.

Both Allegion and Assa Abloy have made agreements with access control manufacturers that allow their products to be added to existing access control systems. Allegion has a range of agreements with various manufacturers limiting to whom Allegion wireless access control products can be sold. In many cases Allegion wireless products can only be sold to the access control company with whose system they will be integrated. Assa Abloy wireless access control locks can only be sold to their designated Certified Integrators. It is through these channels that wireless access control locks make it onto job sites.

Because of these sales limitations, bidding on jobs that specify these kinds of locks can be complicated. Bidders often find they must exclude specified wireless access control locks from their bid because they are unable to buy them. In the case of Assa Abloy products, some bidders may elect to take the online course and become a Certified Integrator. In the case of Allegion, they might be fortunate enough to be bidding on a job in which the access control manufacturer has no agreement with Allegion, and the job can therefore be freely bid. In either case, however, it is a more complicated process than simply pricing out a piece of door hardware.

 





Evolution or intelligent design? Wait, did you say, ‘intelligent?’

 

locksnsafescom

Your source for quality security products with superior service!

Compact Electric Strikes

A common problem with installing electric strikes is cavity depth – that is, how deeply you need to cut into the frame (or wall) so that the electric strike will fit. For most of the twentieth century electric strikes were, and most still are, designed without consideration for this factor. Instead they are designed for burglary resistance and durability.

VD6211

Von Duprin 6211 Electric Strike

Click on  the dimensional diagram of the Von Duprin 6211 electric strike at right.   You can see that its total depth is 1-11/16 inches. All of its internal parts are heavy duty, and it has a heavy cast body and a thick, finished face plate. Most of the parts are individually replaceable. To install the 6211 in a hollow metal door frame, the dust box must be removed and often material inside the door frame – sheet rock, wood, masonry, whatever – must be removed in order to accommodate the strike. If the strike must be installed in a grouted door frame the installer is in for perhaps an hour’s worth of work that may involve a masonry drill, a 2-1/2 lb. sledge hammer, a masonry chisel and safety goggles.

HES 5000 Dimensional DrawingsIn more recent years a new generation of low profile (shallow depth) electric strikes has become available, offering unprecedented ease of installation. The HES 5000 (illustration at left) was one of the first strikes on the scene to offer a depth of only 1-1/16 inches, and advertised that it could be installed without even removing the dust box from the frame. I have found it is usually much easier to knock out the dust box for wiring reasons, but it is true that the unit will fit neatly inside most original equipment dust boxes in hollow metal frames.

More recent offerings in the shallow depth electric strike department include the Trine 3478, the HES 8000 and the Adams Rite 7440, illustrations shown at the end of this article.  All are UL Listed burglary resistant. The HES 8000 offers 1500 lbs. holding force, the 3478 offers 1200 lbs. holding force and the Adams Rite, with its innovative double keeper design, offers 2400 lbs. of holding force.  The Trine 3478 offers an install with a very tiny lip cutout, and the HES 8000 offers the advantage of needing no lip cutout at all. Each of them fit in a strike cavity only 1-1/16 inches deep.

These strikes have revolutionized electric strike installation. Before, a good installer might install six or ten electric strikes in a day. Now a really fast installer might be able to install 20 or more, greatly reducing labor and other costs associated with installation.

What’s the Trade-Off?

None of the internal parts of these strikes are available. When these strikes break, you throw them away and buy new ones. Also they do not last as long. Whereas it is not unusual to see a Von Duprin 6211 or a Folger Adam 712 still in use after 10 or even 20 years, 6 years of service is a long time for a low profile strike. In ten years you might be replacing a spring or solenoid in a Von Duprin, but you might be installing your second or third low profile strike in the same door frame in that same amount of time. This is a small inconvenience.

Upon installing that third strike in the same hole, you probably will not yet have equaled the price of a single Folger Adam 712 or Von Duprin 6211. If price up front is the primary consideration, low profile is definitely the way to go. But if in about 12 years you are installing the fourth replacement strike in the same prep, those expensive, harder-to-install, heavy duty strikes start to look like a much better value.

strikethree

HES model 8000, Trine model 3478 and Adams Rite model 7440

Thank you.

Schlage CO and AD Series Mortise Lock Parts

Schlage AD Series

Schlage AD Series

This just goes to show that there is no substitute for field experience. In the quest to provide the best service to his customer, this locksmith went past my advice and the advice of factory tech support to find the best solution.

The locksmith inquired about a replacement latch for a Schlage CO200MS mortise lock. I called Schlage Tech Support and they said that there were no replacement parts available for that CO-200 Series mortise lock chassis; that the entire mortise chassis had to be replaced for a hefty sum and I relayed this info to the locksmith. The locksmith, however, knew that Schlage advertised that the CO series locksets incorporated the Schlage standard L-series lock chassis “for durability and dependability.” Based on this, the locsksmith took a chance, went to the parts list for the L-Series mortise lock with the same function and ordered the replacement latch. He reports that is identical and works fine.

Good to know! One can assume that many parts from the L Series mortise lock with the same function will work in all AD and CO series mortise lock bodies. Like I said, you learn something new every day.

Thanks for stopping by.

Securitron’s new PowerJump ICPT™ Inductive Coupling Power Transfer

Securitron’s new PowerJump ICPT™

Securitron’s new PowerJump ICPT™

The door hardware industry breathlessly awaits the debut of Securitron’s new PowerJump ICPT™ Inductive Coupling Power Transfer.  The PowerJump is Securitron’s miraculous new device that may put a significant dent in the electric through-wire hinge market.  I mean, why would you drill a half inch hole the width of a 36-inch door when you could install this little pair of black boxes on the lock side?

I downloaded the installation instructions from the Securitron web site to check out product attributes and characteristics.  The first thing I noticed, having spent much of my career working with wooden doors, that the Securitron PowerJump ICPT is a bit friendlier to a hollow metal door or frame install than it is to a wood door or frame install.  Because the body of the unit is almost the same size as the face, the installer must take great care to cut a very clean hole for the body so that the hole does not exceed the size of the face.  This can be a little tricky when using a speed bore bit (or auger bit as mentioned in the instructions) to drill the two deep holes for the mortise pocket before cutting in the face.

One trick I have used to use when installing mortise locks was to cut in the face first and get that nice and clean before drilling the holes.  I had good success with this because it gave me a very clear outline to stay within – much like coloring inside the lines with crayons in kindergarten.  Installing the PowerJump is a lot like installing a really small mortise lock, actually.  The face is the same width and a standard architectural grade mortise lock – 1-1/4 inches.

The PowerJump ICPT draws 500mA at 24 volts DC on the frame side, will transmit it across up to 3/16 inch of empty air and output either 250mA at 24VDC or 500mA at 12VDC on the door side.  500mA seems a little slim to be powering an electrified mortise lock.  Usually I like to see a bit of a cushion when it comes to current, so I would usually not power a device that requires 250mA at 24 volts DC, like a Sargent electrified mortise lock, with a power source that provided no more than the 250mA required.  I’d be a lot happier with a power source that has a capacity at least 1.5 times as great as the appliance being powered.

However, the average electrified hinge with 28-gauge through-wires only has a current rating of about 160mA and we have been powering electric mortise locks with these for decades.  Since I am not an electrical engineer I am not sure how that works, but it does.  I am also mystified by the science behind transmission of electrical current by induction.  Therefore, like most installers, I trust Securitron to produce yet another innovative product that works well.   I’ll be waiting to hear how installers like it when it is finally released.  I know I’ll hear about it one way or another.

Securitech Lexi Electrified Exit Device Trim

Great Problem Solver

The Securitech Lexi series retrofit exit device trim is available with a variety of back plates and adapters that allow it to be used with most major brands, including many surface vertical rod and concealed vertical rod exit devices.  Compatibility with a variety of vertical rod devices is a major plus.

I mean, anybody can electrify a rim exit device by simply installing an electric strike.  However, while it is possible to install an electric strike on a vertical rod device it rarely brings a good result.  First of all, in order to use an electric strike you have to first lose the bottom rod.  That just leaves one latch at the top of the door to provide all the security.  If it is a tall door or a flexible door – like an aluminum storefront door – you can pull the bottom open several inches with just that top latch holding it.  Add a little time and a little hinge sag and pretty soon you have no security at all.

The other solution is electric latch retraction, or electric latch pullback, as some manufacturers call it:  relatively expensive compared with a Lexi trim.  Also, electric latch retraction is a fail secure only solution when locking trim is used and therefore may be inapplicable to fail safe installs such as stairwells, unless passage function (always unlocked) trims are used.

I notice that right out of the box the Lexi is very self contained.  Other than a tiny box containing mounting screws, tailpiece operators, and a cylinder collar and cam, what you see is pretty much what you get.  It’s pretty hefty for its size – it is designed on the slim side so as to be usable on narrow stile as well as hollow metal or wood doors.   This does mean that the installer may have to be a little creative when replacing a larger exit device trim with the Lexi.

Installation instructions are easy to follow and short – only four pages, including the template. Something I would have liked to see in the instructions, but didn’t, was current draw.  If I am installing one of these, the number of amps it draws are not going to matter much to me.  But if I am installing twenty of them and want a centralized power source, now it’s an issue.  Yet it isn’t anything that an experienced low voltage specialist with a ammeter can’t find out in two seconds.

One of the great innovations I noticed right away is the rotation restriction clip that allows the installer to customize tailpiece rotation to the exit device.  I do not think that this is handled better by any other manufacturer.  Correct degree of rotation often determines whether a trim will work or not, and to have a trim that has degree of rotation so easily selectable is damn nice.

As mentioned in the sales literature, since Securitech’s Lexi trim is compatible with so many exit devices, if you have a facility with different brands of exit devices dispersed throughout, you can install access control and unify the exterior appearance at the same time.  And in addition to being versatile it is also durable.  Forcing the lever only causes its internal clutch to break away, and it can easily be set right by rotating it back the other way.

All in all the Securitech Lexi trim seems to be a well built, versatile problem solver.  I think you’ll find it useful in many access control installations.

Cabinet Access Control

Rutherford Controls 3510 Electric Cabinet Lock

Cabinet security was already a concern in hospitals where drug theft is a problem, but has become an increased concern particularly in U.S. hospitals where new HIPAA privacy security regulations have mandated that patient data be secured by key or pass code locking device.  There are a wide variety of locking arrangements available to accomplish the task.

Simplex combination cabinet locks appear often in this application.  They are relatively inexpensive, not too hard to install, and accomplish basic compliance with HIPAA.  The regulations state that access to codes (or keys) should be limited, however, when you have a five-button mechanical combination lock, several hundred people can know the combination in a very short time by word of mouth.  Therefore a more costly and complex solution might be necessary in order to comply with the spirit of the regulations that are designed to actually protect patients’ privacy.

The best way to control people is to make them individually responsible.  That’s what electronic access control is all about.  Typically an institution adopts electronic access control for the audit trail capabilities that monitor who does what, where and when.  So if a patient’s information goes viral on the ‘Net, the debacle can more probably be traced back to its source.

As for credentials, biometrics is the most secure since one cannot share their fingerprint, but card or fob credentials are also effective.  People are less likely to share any credential that can be traced back to them.  Of course, unlike a fingerprint on a live finger, a card or prox fob could be stolen.   I do recommend a physical credential of some kind because PIN numbers are too easily shared.

The drawback to electronic security as applied to cabinets is that most available, good access control hardware tends to be hard wired.  Wiring can be difficult in such tight spaces, yet there are some solutions available.  For example, a resourceful access control installer could use an SDC model 1583 electromagnetic cabinet lock and an IEI Prox.pad keypad/proximity reader to secure a cabinet.  For a fail secure locking device, an RCI 3513 electric cabinet lock could be substituted for the SDC 1583.  The system would run on 24 volts DC and would need a power supply, but at least you could get audit trail and time zone capability out of it, with a Wiegand output for your existing access control system.

There are some glimmers of hope.  There are some stand-alone, battery operated cabinet locks that read a proximity card or i-Button.  But these are simply add-and-delete-user systems that allow control of who has access but does not keep track of when.  Without audit trail capability, access control is little better than that Simplex mechanical combination lock or a regular cabinet lock with its regular brass key.

For now the ultimate solution for cabinet security seems to be to put the cabinet in a locked room and use access control on the room rather than the cabinet.  But I think that will change, don’t you?

Hot Stuff: Continuous Duty Electric Locking Devices

The Ohm Symbol

I regularly hear complaints about electric strikes, cylindrical locks or mortise locks that are hot to the touch.   When I ask, I am always answered that, yes, the device is being used in a continuous duty application.

Continuous duty means that the electric lock or strike is powered continuously, usually for several hours a day.  Most fail safe locks and strikes are run continuously, since they are usually locked part of the day and they require electric power to lock.  Whenever a door is kept unlocked by using an electrical timer, the lock or strike that is controlled by the time is run continuously for part of the timing cycle.

Heat in an electric lock or strike is caused by resistance in the electrical circuit as it passes through the coil of the solenoid inside the device.  Often this heat is sufficient to “burn out” the solenoid.   The solenoid does not actually catch fire, usually.  The term, “burned out” refers to a solenoid that has been ruined by excessive heat so that it no longer functions.

Heat from electrical resistance is exacerbated when there are problems with the supply of power.  For example, if the power supply provides less than sufficient amperage to constantly power the solenoid, the solenoid will ‘run’ hotter.  Similarly if there is a current drop because of a long wire run with inadequate wire gauge, the solenoid will not get sufficient current and will run hot.  Also if the voltage supplied is significantly higher than the solenoid is rated to accept, that could create a heat problem as well.

Often, however, there is no detectable reason for the solenoid to run hot.  Sometimes, it seems, they just do.

A great way to mitigate the problem of the hot lock or strike (when all power supply problems have been solved) is to use an electrical device in line with the electric lock or strike that provides it with a full inrush voltage and current upon activation and then reduces the voltage and/or current to a holding level, allowing the solenoid to run cooler.

Several companies offer these units.  Here are some examples:

  • HES:  Model 2005M3 Smart Pack controller
  • COMMAND ACCESS:  CRU-2 current reduction unit
  • TRINE:  LC-100 line conditioner

 

 

Multi-function Doorways, Part One

As seen in Doors and Hardware Magazine.

Whenever something is invented, humans find more uses for it.  This is certainly true for door automation and electric locking.  It was not long after people realized a door could be unlocked remotely using an electric strike and a door could be opened automatically using a power operator (automatic door opener) that they began using these devices together.   Of course this combination of devices was soon interfaced with intercoms.  Exit devices with electric latch retraction and electromagnetic locks were thrown into the mix, as well as access control, delayed egress and/or security interlock systems.  Any of these systems alone is sufficient to complicate an installation, but when you start to use several on one opening, that’s when things really start to get interesting.

A hospital can be one of the best places to run into a doorway that needs to perform many functions (pun intended).  Hospitals seem to have more varied reasons to keep different people out at different times, or to let them in or out by different means.  In addition to standard life safety and security issues, hospitals also have to anticipate the needs of patients who may be under the influence of medication and/or mental disorders and/or have physical limitations.  Some patients must be kept inside for their own safety while all patients must be able to exit swiftly and safely in the event of a fire.

Let’s use as an example a hospital emergency ward entrance used primarily by ambulance drivers.  The hospital wants only ambulance personnel and the security guard  to be able to activate the power operator, and to control access by use of a remote switch operated by the security guard  for the general public and an access code by hospital employees (other than ambulance personnel).

Since it is a pair of doors, concealed vertical rod exit devices are the most efficient, safe and secure way to lock them and provide reliable free egress in the event of an emergency.  However, since there is a power operator involved, these devices must be equipped with electric latch retraction; and since use of the power operator was to be limited, a second electric means of opening the door would be required.

A simple way to solve the problem of the second means of unlocking is by using electrified exit device lever trim with one of the concealed vertical rod exit devices.  Persons not requiring the power operator can get in by using the access control, or the security guard  can “buzz” them in using one of two remote buttons.  Because there will be two means of unlocking the door electrically, the security guard  will need a small desk unit with two buttons:  one that activates the power operator and electric latch retraction and one that activates the electric exit device trim.

Below is an amateur wiring diagram (made by me) of how, basically, the system works.

Central to the concept is an access control device with two relays and a request to exit input.  This allows several of the connections to be made through the access control system.  If the access control system on site does not provide more than one relay, the same functions can be accomplished by using additional relays in the power supply.

The system as shown in my illustration above works like this:

Ambulance personnel activate the power operator using the access control system.  The access control system signals the power operator via contact closure in Relay #1.  The power operator triggers the relay in the power supply to retract the latches of the exit devices, then opens the door.

Other authorized hospital personnel use the access control system to unlock the lever trim.  The access control system changes the state of Relay #2, triggering the relay in the power supply to unlock the trim.  They turn the lever, pull the door open and walk in.

Injured people arrive on foot at the Emergency Room entrance.  The Security Guard sees them (or is notified by intercom, not shown) and lets them in by pressing the red button, activating the power operator, or by pressing the green button that unlocks the exit device trim.

There exist many possible variations of this system.  Knowledge of access control systems and door hardware are required, but the most important principal in play is the use of contact closure to signal multiple devices.


The Elusive “Touch Chip” Credential

A few years ago, Ingersoll Rand (IR) purchased Locknetics Security Engineering in Connecticut, and since then gradually rebranded the line as Schlage Electronics.   A little over a year ago, as part of the process of closing the Connecticut facility, Schlage Electronics started phasing out its TR80 and TR81 touch readers.  These readers were based on the old technology of the Dallas chip, otherwise known IR/Locknetics land as the touch chip or iButton.  By the end of 2010, Schlage phased out all commercial electronic locking products that incorporated touch chip readers, such as touch readers and locking technologies that incorporated the touch reader, such as the CM line of computer managed locks and their electromagnetic locks with on-board access control.

When the new price books were released in January 2011, the touch chip credential was completely absent.   When questioned about legacy systems, representatives from IR indicated that touch chip users should migrate over to prox tags.  With the new AD and CO series electronic locks, Schlage made available new software and a new hand held programmer (the HHD-KIT) that is backwards compatible with the old hardware.  They also produced a tag with a prox chip on one side and a touch chip on the other so that legacy facilities would be able to carry both credentials over the period of years during which the old CM or other series locks would age out of the system.

One might think that the touch chip has completely faded from the Schlage Electronics scene, but such is not the case.  Looking through the Multi-Family Price Book what do I discover but the new SRT-100 touch reader and a barrage of “iButton” touch chip credentials such as the one pictured.   The new CT-5000 controller that replaces the old CT-1000 controller is also available for those who need to replace ailing legacy systems.  It is my understanding that the iButtons that appear under the multi-family division are fully compatible with legacy technologies such as CM locks or KC-2 series locks.

There is also a new line of smart residential locks that incorporate touch chip technology.  So it is safe to say that touch chip technology is not going to disappear anytime soon.  So if you have a large facility full of old Locknetics products that take iButtons, don’t panic.  At least for now you can still get them.

 


Tags